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In this paper we discuss relations between Fourier-Stieltjes transforms of
(bounded Borel) measures on (- 00, 00) and sequences of Fourier-Stieltjes
coefficients of measures on [0, 211). We show (Theorem B) that if p. is the Fourier­
StieItjes transform of a measure JL on (- 00, 00), then {p.(n)}~_oo is the sequence
of Fourier-StieItjes coefficients of some measure on [0,211). In the other direction
we show (Theorem F) that if {an}~_(,() is the sequence of Fourier-Stieltjes coeffi­
cients of some measure on [0,211), then the function whose graph consists of the
line segments successively joining the points (n, an) must be the Fourier-Stieltjes
transform of a measure on (- 00, 00). We also prove a similar theorem for
distributions.

I. Let M( - 00, (0) and M[O, 21T) denote the spaces of bounded Borel
measures on (- 00, (0) and [0, 21T), respectively. If fl, E M( - 00, (0), its
Fourier-Stieltjes transform fl is defined as

fl(x) = r e-ixt dfl,(t)
-00

(-00 < x < (0).

If v E M[O, 21T), the sequence {an}~_oo of Fourier-Stieltjes coefficients of v is
given by

I f27T
an = - e-int dv(t)

21T 0
(n = 0, ±1, ±2,...).

The abbreviation FT stands for Fourier-Stieltjes transform of a measure on
(- 00, (0) and FS stands for the sequence of Fourier-Stieltjes coefficients of
a measure on [0, 21T).

We shall make use of the functions 8 and .::1, given by

8(t) = ~ . 1 - cos t ( )1T t2 - 00 < t < 00
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and
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.d(x) = 1 - I x I

.d(x) = 0
(I x I ~ 1)

(I x I > 1).

It is well-known [2], p. 21 that S E Ll(- 00, (0) and.d = 8.

n. The first theorem shows that if h is a FT, then {h(n)}~_ao is a FS.
(For absolutely continuous measures this is essentially given in [5], p. 68).
We need first

LEMMA A. Let f.t E M(- 00, (0) and for E C [0, 21T), let

ao

v(E) = 21T L f.t(E + 2k1T).
k=-oo

Then v E M[O, 21T).

Proof To show v is bounded, we have

(2)

00 f(2k+2)17 00

= L d I f.t I (t) = f d I f.t I (t) < 00.
k=-oo 2k17 -00

The interchange of sum and integral is justified by absolute convergence.

THEOREM B. If f.t E M( - 00, 00) and v is defined by (2), then {,1(n)}:=-ao is
the FSfor v.

Proof We have, for n = 0, ±1, ±2,...,

00 ao (2k+2)17

,1(n) = f e-int df.t(t) = L f e-int df.t(t)
-00 k==-OC) 2k'1T

00 f217 1 f217
= L e-int df.t(t + 2k1T) = -- e-int dv{t) = v(n).

k=-oo 0 21T 0

The required absolute convergence follows as in the proof of the lemma.

Remark C. It is clear that if f.t is absolutely continuous, then so is v. Thus,
iffED(-oo, (0) and

ao

ep(t) = 21T L f(t + 2k1T)
k=-oo
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then the series converges for almost all t E [0, 217), and f(J E D[O, 217).
Moreover, {!(n)}'::__ oo will be the Fourier coefficients for f(J. Thus, if f,
g E D( -00, 00) and!(n) = g(n) for all n, then

00 00

L f(t + 2kl7) = L g(t + 2kl7) a.e. (0 ~ t ~ 217)
k~-oo k=-oo

(since the Fourier coefficients for both sums will be equal). Here is an
application. Let

if;(t) = 1/217

if;(t) = 0

(0 ~ t < 217),

for all other t.

Then if; E D(-oo, 00) and {J(O) = I, {J(n) = 0 for n *- O. Thus,

{J(n) = LJ(n) = g(n)

for all n, and so

00 co

L 8(t + 2kl7) = L if;(t + 2kl7) a.e.
k=-oo

But the sum on the right is easily seen to be equal to 1/217 for all t. Thus,
L:=-oo 8(t + 2kl7) = 1/217 a.e. That is,

1 00 1 - cos t 1
-:;; k~CO (t + 2kl7)2 = 217 .

Changing t to 2t, we deduce the familiar identity

00 1 1
kJ:;OO (t + kl7)2 = sin2t .

m. If g is a function on (- 00, (0), we have seen that a necessary
condition that g be a FT is that {g(n)}:'.._co be a FS. This condition is clearly
not sufficient, since g can behave badly on the noninteger reals. However,
there is one type of functions g on (- 00, (0) for which the condition that
{g(n)}:'.._co be a FS is sufficient in order that g be a FT-namely, functions
which are linear on each interval en, n + 1].

LEMMA D. Let {an}:'.._co be any sequence ofcomplex numbers, and let

co

g(x) = L a~(x - k)
k=-OO

(-00 < x < (0), (3)

Then g(n) = an (n = 0, ±1, ±2,...) and g is linear on each interval en, n + 1].
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Proof Fix n. If n ~ x ~ n + 1, then, since L1(y) vanishes outside
-1 < y < 1, L1(x - k) = °for all k ~ n - 1 and all k ~ n + 2. That is, if
n ~ x ~ n + 1, then

g(x) = anLl(x - n) + an+lLl(x - n - 1)

= an[l - I x - n I] + an+l[1 - I x - n - 1 I]
= an [1 - (x - n)] + an+l[1 - (n + 1 - x)].

Thus, g(n) = an and g is linear on [n, n + 1].
Restated, the lemma says that the function whose graph consists of the line

segments joining (n, an) to (n + 1, an+I), for n = 0, ±1, ±2,... , is given by (3).

LEMMA E. Let v E M[O, 27T) and let v- be the periodic extension of v to
(- 00, 00). That is, for E C [2k7T, (2k + 2)7T),

v-(E) = veE - 2k7T).

Let fL = Sv-. (That is, fL(E) = fES(t)dv-(t).) Then fLEM(-oo, (0).

Proof

5
00 00 00 (2k+2)"

d I fL I (t) = 5 Set) d I v~ I (t) = 1: 5 Set) d Iv- I (t)
-00 -00 k=-oo 2k1T

= f r" S(t + 2k7T) d I v- I (t + 2k7T) = f r" S(t + 2k7T) d 1 v 1 (t)
k=-oo 0 k=-OO 0

where M k = max S(t + 2k7T).
O~t~21T

Clearly, M k = O(k-2) as k -+ 00 and so, L:~-<» M k < 00, which proves the
lemma.

THEOREM F. Let {an}:=_<» be the FS for v E M[O, 27T), and let g be the
function whose graph consists of the line segments joining successively the
points (n, an),jor n = 0, ±1, ±2,.... Then g is aFT-indeed, g is the FT of
the measure fL = Sv - .

Proof From Lemma 0 we have, for any x,

g(x) = f anLl(x - n) = f an r e-i(x-nlt 8(t) dt
n=-oo n=_oo-OO

00 00

= L an J e-ixt Set) eint dt.
n=-oo -co

(4)
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We would like to interchange sum and integral. However, we do not know
even that L~-oo aneint, which is the Fourier-Stieltjes series for v, converges.
Hence, we use (C, I) summability. Since the series on the right of (4) converges
to g(x), it is (C, 1) summable to g(x). That is,

g(x) = lim f (1 - In I ) an Ioo
r ixt o(t) e int dt

N~oo n~-N N + 1 -00

= lim Joo r ixt oCt) f (1 - ~-L_) aneint dt,
N~oo _00 n~-N N + 1

and so

( - 00 < x < (0), (5)

where the aN are the (C, 1) means of L:~-oo aneint• Now, aN converges
weak* on the circle to v [3], p. 20. That is,

lim J2

" F(t) aN(t) dt = J2

" F(t) dv(t),
N~oo 0 0

for F continuous on [0, 21T], with F(O) = F(21T). Hence,

J

(2k+21" J(2k+2)"
lim G(t) aN(t) dt = G(t) dv~(t),
N~oo 2k" 2k"

for any G continuous on [2k1T, (2k + 2)1T], with G(2k1T) = G[(2k + 2)1T],
and so

J

(2k+2)" J(2k+2)"
lim e-ixt oCt) aN(t) dt = r ixt oCt) dv-(t),
N->oo 2k" 2k"

(6)

for k = 0, ±1, ±2,....(Note 0(2k1T) = 0[(2k + 2)1T] = 0.) Continuing, we
have

JOO 00 J(2k+2)"
r ixt oCt) aN(t) dt = I r ixt oCt) aN(t) dt. (7)

-co k=-OO 2k7T'

Now f~~k+2)" I aN(t) Idt ~ M, for all N = 1,2'00" [3], p. 23. For each
k = 0, ±1, ±2,00., we thus have H~~+2)" I e-ixt oCt) aN(t)1 dt ~ MMk , where
M k is as in the proof of Lemma E. Hence, the series on the right of (7) is term
by term dominated by L':'-oo MMk < 00, which is independent of N. We
may, thus, let N -- 00 under the summation sign in (7). This and (6) give

00 00 (2k+2)"

li~ J e-ixt oCt) aN(t) dt = I J r ixt o(t) dv-(t)
N -00 k=-oo 2k"

= r e-ixt oCt) dv-(t).
_00

Hence, by (5), g is the FT of fL = ov-, which is what we wished to show.
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From the definition of ft, it is clear that if v is absolutely continuous, then
so is fL. We, thus, have

COROLLARY G. Let cp E V[O, 27T) have Fourier coefficients {an}nOO~_", and
let g be thefunction whose graph consists ofthe line segmentsjoining successively
the points (n, an), for n = 0, ±I, ±2,.... Then g is the Fourier transform ofa
function in V(-oo, oo)-indeed, g = (ocp-y, where cp- is the periodic
extension to (- 00, 00) of cp.

IV. For those familiar with distributions we can give a generalizaion
of Theorem F. For distributions on the circle we refer the reader to [1],
Chap. 12 and for distributions on the line, to [4], Chap. 4.

THEOREM H. Let T be a distribution on [0, 27T) having Fourier coefficients
{a,.}:'_oo and let g be the function whose graph consists of the line segments
successively joining the points (n, an)for n = 0, ± 1, ±2,.... Then g (considered
as a distribution) is the Fourier transform of a tempered distribution-indeed
g = (oT-y, where T- is the periodic extension of T to (- 00, 00).

Proof It is known that every distribution on the circle has finite order.
Hence,

an = 0(1 n IS) (I n 1-- (0), (8)

for some positive integer s. Now, T- can be defined as

00

T- = L aneint
n=~OO

(-00 < t < 00)

and, because of (8), T- will be a tempered distribution on (- 00, 00). If en
is the measure on (-00, (0), with mass 1 at n, and if

then cp is a tempered distribution and is the Fourier transform of T-. By
Lemma E,

00

g(x) = L anA(x - n)
n_-oo

and so, since en * A = A(x - n),

g = c~oo anen) * A = cp * A,

where g is, now, a distribution.



FOURIER TRANSFORMS AND SEQUENCES 155

But ([4], p. 424), if T1 is a tempered distribution and T2 is a tempered
distribution whose Fourier transform is a function with compact support,
then T1" * T2" = (T1T2Y. Hence, since ..d has compact support, we have
g = ep *..d = T-" * 0" = (T- 0)" and the proof is complete.

If T is a measure, then Theorem H together with Lemma E gives a shorter
proof of Theorem F. However, the results concerning distributions that we
have used are much deeper and more difficult to establish than the results
used in the proof of Theorem F, as given.
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